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Inverter-level security

Digital twin and hot patching

Vulnerability mitigation
Attack detection
Supply chain security

* System-level security

Model- and ML-based attack
detection
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Data-driven Cyberattack Detection
® A comprehensive comparison of data-driven cyber-attack detection methods

Machine Learning
PV e
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Neural Network

= Artificial Neural Network (ANN)

‘ = Convolution Neural Network (CNN)
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J. Zhang, L. Guo, J. Ye, A. Giani, A. Elasser, W. Song, J. Liu, B. Chen, and H. A. Mantooth, “Machine Learning-based Cyber-attack Detection in Photovoltaic Farms”, in IEEE Open
Journal of Power Electronics, 2023.
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Data-driven Cyberattack Detection

® A comprehensive comparison of data-driven cyber-attack detection methods

Training Process
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Journal of Power Electronics, 2023.

@ Figures of Merit (120Hz)

J. Zhang, L. Guo, J. Ye, A. Giani, A. Elasser, W. Song, J. Liu, B. Chen, and H. A. Mantooth, “Machine Learning-based Cyber-attack Detection in Photovoltaic Farms”,
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p Conclusion:

® \Well-designed Figures of Merit
outperform the Waveform and
PMU data in terms of efficiency
and accuracy.

® CNN shows superior performance
surpassing ANN and LSTM.

® This method cannot detect novel
attacks that are not included in

the training set.
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Data-driven Cyberattack Detection
® Data-driven cyber-attack detection using physics-guided time-frequency features
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L. Guo, J. Zhang, J. Ye, S. J. Coshatt. and W. Song, “Data-driven cyber-attack detection for PV farms via time-frequency domain features,” IEEE Transactions on Smart Grid, 2021.
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Data-driven Cyberattack Detection

® Data-driven cyber-attack detection using physics-guided time-frequency features

Innovative Features to Address Testing Results when New Attacks
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L. Guo, J. Zhang, J. Ye, S. J. Coshatt. and W. Song, “Data-driven cyber-attack detection for PV farms via time-frequency domain features,” IEEE Transactions on Smart Grid, 2021.
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Data-driven Cyberattack Detection
® A transfer learning technique for cyber-attack detection in PV farms
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* Research problem- how to reduce the data needs and time of training machine learning models for a new
solar farm?

* Two solar farm attack models are built to generate the dataset

» Solar farm #1: 400 kVA in a small-scale power grid.

» Solar farm #2: 910 kVA connected to the IEEE 37-node distributed grid.
* Transfer learning is used

Q. Li, J. Zhang, J. Ye and W. Song, "Data-driven cyber-attack detection for photovoltaic systems: A transfer learning approach," 2022 IEEE Applied Power Electronics Conference
and Exposition (APEC).
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Data-driven Cyberattack Detection
® A transfer learning technique for cyber-attack detection in PV farms

Performance comparison between transferred model and the newly trained model

Training samples  F1 (transfered model) F1 (newly trained model)

10% 0.757 0.673
20% 0.805 0.698
40% 0.912 0.822
60% 0.952 0.894
80% 0.979 0.982
100% 0.978 0.989

Transferred model achieves 95.2% accuracy (F1 score) using 60% training dataset.
* Transfer learning requires much lower amount of dataset and training time
compared with newly-trained model.

Q. Li, J. Zhang, J. Ye and W. Song, "Data-driven cyber-attack detection for photovoltaic systems: A transfer learning approach," 2022 IEEE Applied Power Electronics Conference
and Exposition (APEC).
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® The DTL method takes a pre-trained model from a type of image dataset, freeze a portion of the layers,
and then fine-tune the last few layers on the newly obtained dataset
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DTL Mode!
The proposed DTL model

Internal View
A commercial smart inverter architecture

S. Alvee, B. Ahn, S. Ahmad, K. Kim, T. Kim, J. Zeng, “Device-Centric Firmware Malware Detection for Smart
Inverters using Deep Transfer Learning,” IEEE Design Methodologies Conference (DMC), 2022
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~ Firmware Malware Detection for Smart Inverters

® The proposed DTL model experiment

" The basis DL model experiment
o 100 benign files and 100 malware o loT device (Raspberry Pi 4B)
o 1 benign file and 5 malware
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Training and validation accuracy of the DTL model

Experiment setup on an emulated smart inverter security testbed
S. Alvee, B. Ahn, S. Ahmad, K. Kim, T. Kim, J. Zeng, “Device-Centric Firmware Malware Detection for
Smart Inverters using Deep Transfer Learning,” IEEE Design Methodologies Conference (DMC), 2022
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* ML is a promising technique in PV system cybersecurity
* No ML model works for all
* Lack of data — transfer learning might help

Transfer across domains
Transfer within PV systems

* Physics-informed feature selection could be leveraged

* Cyber attacks and physical faults should be considered
together
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